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Abstract

This paper describes a technique for approximating sounds that are
generated by the motions of solid objects. The technique builds on
previous work in the field of physically based animation that uses
deformable models to simulate the behavior of the solid objects. As
the motions of the objects are computed, their surfaces are analyzed
to determine how the motion will induce acoustic pressure waves in
the surrounding medium. Our technique computes the propagation
of those waves to the listener and then uses the results to generate
sounds corresponding to the behavior of the simulated objects.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation; H.5.5 [Information Interfaces and Presen-
tation]: Sound and Music Computing—Signal analysis, synthesis,
and processing

Keywords: Sound modeling, physically based modeling, sim-
ulation, surface vibrations, dynamics, animation techniques, finite
element method.

1 Introduction

One of the ultimate goals for computer graphics is to be able to cre-
ate realistic synthetic environments that are indistinguishable from
reality. While enormous progress has been made in areas such
as modeling and rendering, realizing this broad objective requires
more than just creating realistic static appearances. We must also
develop techniques for making the dynamic aspects of the environ-
ment compelling as well.

Physically based animation techniques have proven to be a
highly effective means for generating compelling motion. To date,
several feature films have included high quality simulated motion
for a variety of phenomena including water and clothing. Inter-
active applications, such as video games and training simulations,
have also begun to make use of physically simulated motion. While
computational limitations currently restrict the types of simulations
that can be included in real-time applications, it is likely that these
limitations will eventually be overcome through a combination of
faster hardware and more efficient algorithms.
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Figure 1: The top image shows a multi-exposure image from an
animation of a metal bowl falling onto a hard surface. The lower
image shows a spectrogram of the resulting audio for the first five
impacts.

Although the field of computer graphics traditionally focuses on
generating visuals, our perception of an environment encompasses
other modalities in addition to visual appearance. Because these
other modalities play an integral part in forming our impression of
real-world environments, the graphics goal of creating realistic syn-
thetic environments must also encompass techniques for modeling
the perception of an environment through our other senses. For ex-
ample, sound plays a large role in determining how we perceive
events, and it can be critical to giving the user/viewer a sense of
immersion.

The work presented in this paper addresses the problem of au-
tomatically generating physically realistic sounds for synthetic en-
vironments. Rather than making use of heuristic methods that are
specific to particular objects, our approach is to employ the same
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simulated motion that is already being used for generating ani-
mated video to also generate audio. This task is accomplished by
analyzing the surface motions of objects that are animated using
a deformable body simulator, and isolating vibrational components
that correspond to audible frequencies. The system then determines
how these surface motions will generate acoustic pressure waves in
the surrounding medium and models the propagation of those waves
to the listener. For example, a finite element simulation of a bowl
dropping onto the floor was used to compute both the image shown
in Figure 1 and the corresponding audio.

Assuming that the computational cost of physically based anima-
tion is already justified for the production of visuals, the additional
cost of computing the audio with our technique is negligible. The
technique does not make use of specialized heuristics, assumptions
about the shape of the objects, or pre-recorded sounds. The audio is
generated automatically as the simulation runs and does not require
any user interaction. Although we feel that the results generated
with this technique are suitable for direct use in many applications,
nothing precludes subsequent modification by another process or a
Foley artist in situations where some particular effect is desired.

The remaining sections of this paper provide a detailed descrip-
tion of the sound generation technique we have developed, a re-
view of related prior work, several examples of the results we have
obtained, and a discussion of potential areas for future work. Pre-
senting audio in a printed medium poses obvious difficulties. We
include plots that illustrate the salient features of our results, and
the proceedings video tape and DVD include animations with the
corresponding audio.

2 Background

Prior work in the graphics community on sound generation and
propagation has focussed on efficiently producing synchronized
soundtracks for animations [18, 30], and on correctly modeling re-
flections and transmissions within the sonic environment [14, 15,
21]. In their work on modeling tearing cloth, Terzopoulos and
Fleischer generated soundtracks by playing a pre-recorded sound
whenever a connection in a spring mesh failed [31]. The DIVA
project endeavored to create virtual musical performances in vir-
tual spaces using physically derived models of musical instruments
and acoustic ray-tracing for spatialization of the sound sources [27].
Funkhouser and his colleagues used beam tracing algorithms and
priority rules to efficiently compute the direct and reflected paths
from sound sources to receivers [15]. Van den Doel and Pai mapped
analytically computed vibrational modes onto object surfaces al-
lowing interactive sound generation for simple shapes [34]. Rich-
mond and Pai experimentally derived modal vibration responses us-
ing robotic measurement systems, for interactive re-synthesis using
modal filters [26]. More recent work by van den Doel, Kry, and
Pai uses the output of a rigid body simulation to drive re-synthesis
from the recorded data obtained with their robotic measurement
system [33].

Past work outside of the graphics community on simulating the
acoustics of solids for the purpose of generating sound has centered
largely on the study of musical systems, such as strings, rigid bars,
membranes, piano sound boards, and violin and guitar bodies. The
techniques used include finite element and finite difference meth-
ods, lower dimensional simplifications, and modal/sinusoidal mod-
els of the eigenmodes of sound-producing systems.

Numerical simulations of bars and membranes have used either
finite difference [3, 8, 10] or finite element methods [4, 5, 24]. Fi-
nite differencing approaches have also been used to model the be-
havior of strings [6, 7, 25].

Many current real-time techniques model the modes of acous-
tical systems, using resonant filters [1, 9, 35, 37] or additive si-
nusoidal synthesis [28]. In essence, modal modeling achieves ef-

ficiency by removing the spatial dynamics, and by replacing the
actual physical system by an equivalent mass-spring system which
models the same spectral response. However, the dynamics (in par-
ticular the propagation of disturbances) of the original system are
lost. If the modal shapes are known, the spatial information can be
maintained and spatial interactions can remain meaningful.

If certain assumptions are made, some systems can be modeled
in reduced dimensionality. For example, if it is assumed that a drum
head or the top-plate of a violin is very thin, a two-dimensional
mesh can be used to simulate the transverse vibration [36].

In many systems such as strings and narrow columns of air,
vibration can be considered one-dimensional, with the principal
modes oriented along only one axis. McIntyre, Schumacher and
Woodhouse’s time-domain modeling technique has proven to be
very useful in simulating musical instruments with a resonant sys-
tem which is well approximated by the one-dimensional wave equa-
tion [20]. Such systems exhibit the d’Alembert solution, which is
a decomposition of the one-dimensional wave equation into left-
going and a right-going traveling wave components. Smith in-
troduced extensions to the idea taken from scattering filter theory
and coined the term “Waveguide Filters” for simulations based on
this one-dimensional signal processing technique [29]. The waveg-
uide wave-equation formulation can be modified to account for fre-
quency dependent propagation speed due to stiffness, as described
in [11]. In this technique, the propagation speeds around the eigen-
modes of the system are modeled accurately, with errors introduced
in damping at frequencies other than the eigenmodes.

When considering that the various efficient techniques described
above are available, it should be noted that the approximations are
flawed from a number of perspectives. For example, except for
strings and simple bars, most shapes are not homogeneous. It is
important to observe that for even moderate inhomogeneity, re-
flections at the points of changing impedance have to be expected
that are not captured in a straightforward way. Further, the wave-
equation and Euler-Bernoulli equation derivations also assume that
the differential equations governing solid objects are linear. As a
result the above methods can produce good results but only under
very specific conditions. The method that we describe in the next
section requires more computation than most of the above tech-
niques, but it is much more general.

3 Sound Modeling

When solid objects move in a surrounding medium, they induce
disturbances in the medium that propagate outward. For most fluid
media, such as air or water, the significance of viscous effects de-
creases rapidly with distance, and the propagating disturbance has
the characteristics of a pressure wave. If the magnitude of the
pressure wave is of moderate intensity so that shock waves do not
form and the relationship between pressure fluctuation and density
change is approximately linear, then the waves are acoustic waves
described by the equation

∂2p

∂t2
= c2∇2p (1)

where t is time, p is the acoustic pressure defined as the difference
between the current pressure and the fluid’s equilibrium pressure,
and c is the acoustic wave speed (speed of sound) in the fluid. Fi-
nally, if the waves reach a listener at a frequency between about
20 Hz and 20,000 Hz, they will be perceived as sound. (See Chap-
ter five of the text by Kinsler et al. [19] for a derivation of Equa-
tion (1).)

The remainder of this section describes our technique for ap-
proximating the sounds that are generated by the motions of solid
objects. The technique builds on previous work in the field of phys-
ically based animation that uses deformable models to simulate the
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Figure 2: A schematic overview of joint audio and visual rendering.
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Figure 3: Tetrahedral mesh for an F]3 vibraphone bar. In (a), only
the external faces of the tetrahedra are drawn; in (b) the internal
structure is shown. Mesh resolution is approximately 1 cm.

behavior of the objects. As the motion of the solid objects is com-
puted, their surfaces are analyzed to determine how the motion will
induce acoustic pressure waves in the surrounding media. The sys-
tem computes the propagation of those waves to the listener and
then uses the results to generate sounds corresponding to the simu-
lated behavior. (See Figure 2.)

3.1 Motions of Solid Objects

The first step in our technique requires computing the motions of
the animated objects that will be generating sounds. As these mo-
tions are computed, they will be used to generate both the audio and
visual components of the animation.

Our system models the motions of the solid objects using a
non-linear finite element method similar to the one developed by
O’Brien and Hodgins [22, 23]. This method makes use of tetrahe-
dral elements with linear basis functions to compute the movement
and deformation of three-dimensional, solid objects. (See Figure 3.)
Green’s non-linear finite strain metric is used so that the method can
accurately handle large magnitude deformations. A volume-based
penalty method computes collision forces that allow the objects to
interact with each other and with other environmental constraints.
For the sake of brevity, we omit the details of this method for mod-
eling deformable objects which are adequately described in [22].

We selected this particular method because it is reasonably fast,
reasonably accurate, easy to implement, and treats objects as solids
rather than shells. However, the sound generation process is largely
independent of the method used to generate the object motion. So
long as it fulfills a few basic criteria, another method for simulating
deformable objects could be selected instead. These criteria are

• Temporal Resolution — Vibrations at frequencies as high
as about 20,000 Hz generate audible sounds. If the simula-
tion uses an integration time-step larger than approximately
10−5 s, then it will not be able to adequately model high fre-
quency vibrations.

• Dynamic Deformation Modeling — Most of the sounds that
an object generates as it moves arise from vibrations driven by
elastic deformation. These vibrations will not be present with
techniques that do not model deformation (e.g. rigid body
simulators). Similarly, these vibrations will not be present
with inertia-less techniques.

• Surface Representation — Because the surfaces of the ob-
jects are where vibrations transition from the objects to the
surrounding medium, the simulation technique must contain
some explicit representation of the object surfaces.

• Physical Realism — Simulation techniques used for phys-
ically based animation must produce motion that is visually
acceptable for the intended application. Generating sounds
from the motion will reveal additional aspects of the mo-
tion that may not have been visibly apparent, so a simulation
method used to generate audio must compute motion that is
accurate enough to sound acceptable in addition to looking
acceptable.

The tetrahedral finite element method we are using meets all of
these criteria, but so do many other methods that are commonly
used for physically based animation. For example, a mass and
spring system would be suitable provided the exterior faces of the
system were defined.

3.2 Surface Vibrations

Once we have a method for computing the motion of the objects,
the next step in the process requires analyzing the surface’s motions
to determine how it will affect the pressure in the surrounding fluid.
Let Ω be the surface of the moving object(s), and let ds be a differ-
ential surface element in Ω with unit normal ˆ

� and velocity � . If
we neglect viscous shear forces then the acoustic pressure, p, of the
fluid adjacent to ds is given by

p = z � · ˆ� . (2)

where z = ρc is the fluid’s specific acoustic impedance. From [19],
the density of air at 20°C under one atmosphere of pressure is
ρ = 1.21 kg/m3, and the acoustic wave speed is c = 343 m/s,
giving z = 415 Pa · s/m.

Representing the pressure field over Ω requires some form of
discretization. We will assume that a triangulated approximation of
Ω exists (denoted Ω∗) and we will approximate the pressure field
as being constant over each of the triangles in Ω∗.

Each triangle is defined by three nodes. The position, � , and
velocity, ˙� , of each node are computed by a physical simulation
method as discussed in Section 3.1. We will refer to the nodes of a
given triangle by indexing with square brackets. For example, � [2]

is the position in world coordinates of the triangle’s second node.
The surface area of each triangle is given by

a = ||( � [2] − � [1])× ( � [3] − � [1])||/2, (3)

and its unit normal by

ˆ
� =

( � [2] − � [1])× ( � [3] − � [1])

2a
. (4)

The average pressure over the triangle is computed by substituting
the triangle’s normal and average velocity, ¯� , into Equation (2) so
that

p̄ = z¯� · ˆ� = z

(

1

3

3
∑

i=1

˙� [i]

)

· ˆ� . (5)

The variable p̄ tells us how the pressure over a given triangle
fluctuates, but we are only interested in fluctuations that correspond
to frequencies in the audible range. Frequencies above this range
will need to be removed or they will cause aliasing artifacts.1 Lower

1We assume that the simulation time-step is smaller than the audio sam-
pling period. This is the case for our examples which used an integration
time-step between 10

−6
s and 10

−7
s.
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Figure 4: One-dimensional accumulation buffer used to account
for travel time delay.

frequencies will not cause aliasing problems, but they will interact
with later computations to create other difficulties. For example,
an object moving at a constant rate will generate a large, constant
pressure in front of it. The corresponding constant term will show
up as an inconvenient offset in the final audio samples. More im-
portantly, it may interact with latter visibility computations to create
unpleasant artifacts. To remove undesirable frequency components,
we make use of two filters that are applied to the pressure variable
at each triangle in Ω∗.

First, a low-pass filter is applied to p̄ to remove high frequencies.
The low-pass filter is implemented using a normalized kernel, K,
built from a windowed sinc function given by

Ki = sinc(i∆t) · win(i/w) , i ∈ [−w, . . . , w] (6)

sinc(t) =
sin(2πfmaxt)

πt
(7)

win(u) =

{

1/2 + cos(πu)/2 : |u| ≤ 1
0 : |u| > 1 ,

(8)

where fmax is the highest frequency to be retained, ∆t is the sim-
ulation time-step, and w is the kernel’s half-width. The low-pass
filtered pressure, g, is obtained by convolving p̄ with K and sub-
sampling the result down to audio rate.

The second filter is a DC-blocking filter that will remove any
constant component and greatly attenuate low-frequency ones. It
works by differentiating a signal and then re-integrating the signal
using a “lossy integrator.” The final filtered pressure, p̃, after appli-
cation of the DC-blocking filter is given by

p̃i = (1− α)p̃i−1 + (gi − gi−1), (9)

where α is a loss constant between zero and one, g is the low-pass
filtered pressure, and the subscripts index time at audio rate.

For the examples presented in this paper, fmax was 22,050 Hz
and we sub-sampled to an audio rate of 44,100 Hz. The low-pass
filter kernel’s half-width was three times the wavelength of fmax

(w = d3/(fmax∆t)e). The value of α was selected by trial and
error with α = 0.1 yielding good results.

3.3 Wave Radiation and Propagation

Once we know the pressure distribution over the surface of the
objects we must compute how the resulting wave propagates out-
ward towards the listener. The most direct way of accomplishing
this task would involve modeling the region surrounding the ob-
jects with Equation (1), and using the pressure field over Ω as pre-
scribed boundary conditions. This approach would lead to a cou-
pled solid/fluid simulation. Unfortunately, the additional cost of
the fluid simulation would not be trivial. Instead, we can make a
few simplifying assumptions and use a much more efficient solu-
tion method.

Huygen’s principle states that the behavior of a wavefront may
be modeled by treating every point on the wavefront as the origin
of a spherical wave, which is equivalent to stating that the behavior
of a complex wavefront can be separated into the behavior of a set
of simpler ones [17]. Using this principle, we can approximate the
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Figure 5: Spectrum generated by plucking the free end of a
clamped bar. Predicted values are taken from [19].

result of propagating a single pressure wave outward from Ω by
summing the results of a many simpler waves, each propagating
from one of the triangles in Ω∗.

If we assume that the environment is anechoic (no reflections)
and we ignore the effect of diffraction around obstacles, then a rea-
sonable approximation for the effect on a distant receiver of the
pressure wave generated by a triangle in Ω∗ is given by

s =
p̃ a δx̄→r

||¯� − � ||
cos(θ), (10)

where � is the location of the receiver, ¯� is the center of the triangle,
θ is the angle between the triangle’s surface normal and the vector
� − ¯� , and δx̄→r is a visibility term that is one if an unobstructed
ray can be traced from ¯� to � and zero otherwise.2 The cos(θ) is
a rough approximation to the first lobe of the frequency-dependent
beam function for a flat plate [19].

Equation (10) is nearly identical to similar equations that are
used in image rendering with local lighting models, and the de-
cision to ignore reflected and diffracted sound waves is equivalent
to ignoring secondary illumination. A minor difference is that the
falloff term is inversely proportional to distance, not to distance
squared. The sound intensity, measured in energy per unit time and
area, does falloff with distance squared, but eardrums and micro-
phones react to pressure which is proportional to the square-root of
intensity [32].

2The center of a triangle is computed by averaging the locations of its
vertices and low-pass filtering the result using the sinc kernel from Equa-
tion (6). Likewise, the normal is obtained from low-pass filtered vertex lo-
cations. The filtering is necessary because the propagation computations are
performed at audio rate, not simulation rate, and incorrectly sub-sampling
the triangle centers or normals will result in audible aliasing artifacts.



A more significant difference arises because sound travels sev-
eral orders of magnitude slower than light, and we cannot assume
that sound propagation is instantaneous. In fluids such as air, sound
does travel rapidly enough (c = 343 m/s) that we may not directly
notice the delay except over large distances, but we do notice in-
direct effects even at small distances. For example, very small de-
lays are responsible for both Doppler shifting and the generation of
interference patterns. Additionally, if we wish to compute stereo
sound by using multiple receiver locations, then delay differences
between a human listener’s ears as small as 20 µs provide important
cues for localizing sounds [2].

To account for propagation delay we make use of a one-
dimensional accumulation buffer that stores audio samples. All
entries in the buffer are initially set to zero. When we compute
s for each of the triangles in Ω∗ at a given time, we also compute a
corresponding time delay

d =
||¯� − � ||

c
. (11)

The s values are then added to the entries of the buffer that cor-
respond to the current simulation time plus the appropriate delay.
(See Figure 4.)

In general, d will not be a multiple of the audio sampling rate. If
we were to round to the nearest entry in the accumulation buffer, the
resulting audio would contain artifacts akin to the “jaggies” that oc-
cur when scan-converting lines. These artifacts will manifest them-
selves in the form of an unpleasant buzzing sound as if a saw-tooth
wave had been added to the result. To avoid this problem, we add
the s values into the buffer by convolving the contribution with a
narrow (two samples wide) Gaussian and “splatting” the result into
the accumulation buffer.

As the simulation advances forward in time, values are read from
the entry in the accumulation buffer that corresponds to the current
time. This value is treated as an audio sample that is sent to the
output sink. If stereo sound is desired we compute this propagation
step twice, once for each ear.

4 Results

We have implemented the described technique for generating audio
and tested the system on several examples. For all of the examples,
two listener locations were used to produce stereo audio. The lo-
cations are centered around the virtual viewpoint and separated by
20 cm along a horizontal axis that is perpendicular to the viewing
direction. The sound spectra shown in the following figures follow
the convention of plotting frequency amplitude using decibels, so
that the vertical axes are scaled logarithmically.

Figure 1 shows an image taken from an animation of a bowl
falling onto a hard surface and a spectrogram of the resulting audio.
In this example, only the surface of the bowl is used to generate
the audio, and the floor is modeled as rigid constraint. The spec-
trogram reveals the bowl’s vibrational modes as darker horizontal
lines. Variations in the degree to which each of the modes are ex-
cited occur because different parts of the bowl hit the surface on
each bounce.

The bowl’s shape is arbitrary and there is no known analytical
solution for its vibrational modes. While being able to model ar-
bitrary shapes is a strength of the proposed method, we would like
to verify its accuracy by comparing its results to known solutions.
Figure 5 shows the results computed for a rectangular bar that is
clamped at one end and excited by applying a vertical impulse to
the other. The accompanying plot shows the spectrum of the re-
sulting sound with vertical lines indicating the mode frequencies
predicted by a well known analytical solution [19]. Although the

(a) (b)

Figure 6: A square plate being struck (a) on center and (b) off
center.
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Figure 7: Spectrum generated by striking the square plate shown
in Figure 6 in the center (top) and off from center (right). Predicted
values are taken from [12].

results correspond reasonably well, the simulated results are no-
ticeably flatter than the theoretical predictions. One possible ex-
planation for the difference is that the analytical solution assumes
the bar to be perfectly elastic, while our simulated bar experiences
internal damping.

Figure 6 shows two trials from a simulation of a square plate
(with finite thickness) that is held fixed along its border while be-
ing struck by a weight. In the first trial the weight hits the plate
on-center, while in the second trial the weight lands off-center hor-
izontally by 25% of the plate’s width and vertically by 17%. The
frequencies predicted by the analytical solution given by Flecher
and Rossing [12] are overlaid on the spectra of the two resulting
sounds. As with a real plate, the on-center strike does not sig-
nificantly excite vibrational modes that have nodes lines passing



Real Bar Simulation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
−20

−10

0

10

20

30

40

50

60

70

Frequency (Normalized)

A
m

pl
itu

de
 (

dB
)

Simulated 1   
Simulated 2   
Measured      
Ideal Tuning

Figure 8: The top image plots a comparison between the spectra of
a real vibraphone bar (Measured), and simulated results for a low-
resolution (Simulated 1) and high-resolution mesh (Simulated 2).
The vertical lines located at 1, 4, and 10 show the tuning ratios
reported in [12].

through the center of the plate (e.g. the modes indicated by the sec-
ond and third dashed, red lines). The off-center strike does excite
these modes and a distinct difference can be heard in the result-
ing audio. The simulation’s lower modes match the predicted ones
quite well, but for the higher modes the correlation becomes ques-
tionable. Poor resolution of the higher modes is to be expected as
they have a lower signal-to-noise ratio and are more easily affected
by discretization and other error sources.

The bars in a vibraphone are undercut so that the first three par-
tials are tuned according to a 1:4:10 ratio. While this modifica-
tion makes the instrument sound pleasant, the change in transverse
impedance between the thin and thick portions of the bar prevent
an analytical solution. We ran two simulations of a 36 cm long bar
with mesh resolutions of 1 cm and 2 cm, and compared them to a
recording of a real bar being struck. (The 1 cm mesh is shown in
Figure 3.) To facilitate the comparison, the simulated audio was
warped linearly in frequency to align the first partials to that of the
real bar at 187 Hz ( F]3), which is equivalent to adjusting the simu-
lated bar’s density so that is matches the real bar. The results of this
comparison are shown in Figure 8. Although both the simulated and
real bars differ slightly from the ideal tuning, they are quite similar
to each other. All three sounds also contain a low frequency com-
ponent below the bar’s first mode that is created by the interaction
with the real or simulated supports.

The result of striking a pendulum with a fast moving weight is
shown in Figure 9. Because of Doppler effects, the pendulum’s pe-
riodic swinging motion should modulate both the amplitude and the
frequency of the received sound. Because our technique accounts
for both distance attenuation and travel delay, it can model these
phenomena. The resulting modulation is clearly visible in the spec-
trogram (particularly in the line near 500 Hz) and can be heard in
the corresponding audio.

Because this sound generation technique does not make addi-
tional assumptions about how waves travel in the solid objects, it
can be used with non-linear simulation methods to generate sounds
for objects whose internal vibrations are not modeled by the linear

wave equation. The finite element method we are using employs
a non-linear strain metric that is suitable for modeling large de-
formations. Figure 10 shows frames from two animation of a ball
dropping onto a sheet. In the first one, the sheet is nearly rigid and
the ball rolls off. In the second animation, the sheet is highly com-
pliant and it undergoes large deformations as it interacts with the
ball. Another example demonstrating large deformations is shown
in Figure 11 where a slightly bowed sheet is being bent back and
forth to create crinkling sound. Animations containing the audio for
these, and other, examples have been included on the proceedings
video tape and DVD. Simulations times are listed in Table 1.

5 Conclusions and Future Work

In this paper, we have described a general technique for computing
physically realistic sounds that takes advantage of existing simula-
tion methods already used for physically based animation. We have
also presented a series of examples that demonstrate the results that
can be achieved when our technique is used with a particular, finite
element based simulation method.

One area for future work is to combine this sound generation
technique with other simulation methods. As discussed in Sec-
tion 3.1, it should be possible to generate audio from most de-
formable body simulation methods such as mass and spring sys-
tems or dynamic cloth simulators. It may also be possible to gener-
ate audio from some fluid simulation methods, such as the method
developed by Foster and Metaxas for simulating water [13].

Of the criteria we listed in Section 3.1, we believe that the re-
quired temporal resolution is most likely to pose difficulties. If
the simulation integrator uses time-steps that are larger than about
10−5 s, the higher frequencies of the audible spectrum will not be
sampled adequately so that, at best, the resulting audio will sound
dull and soggy. Unfortunately, small time-steps result in slow sim-
ulations, and as a result a significant amount of research has fo-
cused on finding ways to allow numerical integrators to take larger
steps while remaining stable. In general, the larger time-steps are
achieved by removing the high-frequency components from the
motions being computed. While removing these high-frequency
components will at some point create visually objectionable arti-
facts, it is likely that sound quality will be adversely affected first.

Rigid body simulations are also excluded by our criteria because
they do not model the deformations that drive most of the vibra-
tions that produce sound. This limitation is particularly unfortu-
nate because rigid body simulations are widely used, particularly in
interactive applications. Because they are so commonly used, de-
veloping general methods for computing sounds for rigid body and
large time-step simulation methods is an important area for future
work.

Although our sound propagation model is relatively cheap to
compute, it is also quite limited. Reflected and diffracted sound
transport often play a significant role in determining what we hear
in an environment. To draw an analogy with image rendering, our
current method is roughly equivalent a local illumination model and
adding reflection and diffraction would be equivalent to stepping up
to global illumination. In some ways global sound computations
would actually be more complex than global illumination because
one cannot assume that waves propagate instantaneously. Other re-
searchers have investigated techniques for modeling acoustic reflec-
tions, for example [14], and combining our work with theirs would
probably be useful.

Our listener model could also be improved. As currently im-
plemented, a listener receives pressure waves equally well from all
directions. While this behavior is ideal for an omni-directional mi-
crophone, human ears and most real microphones behave quite dif-
ferently. One obvious effect is that the human head acts as a blocker
so that high frequency sounds from the side tend to be heard better
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Figure 9: The spectrogram produced by a swinging bar after it is
struck by a weight.

by that ear while low frequencies diffract around the head and are
heard by both ears. Other, more subtle effects, such as the pattern
of reflections off of the outer ear, also contribute to allowing us to
localize the sounds we hear. Other researchers have taken extensive
measurements to determine how sounds are affected as they enter a
human ear, and used the compiled data to build head-related transfer
functions [2, 16]. Filters derived from these transfer functions have
been used successfully for generating three-dimensional spatialized
audio. We are currently working on adding this functionality to our
existing system.

Our primary goal in this work has been to generate a tool that is
useful for generating audio. However, we have also noticed that the
audio produced by a simulation makes an excellent debugging tool.
For example, we have observed that symptoms of a simulation go-
ing unstable often can be heard before they become visible. Other
common simulation errors, such as incorrect collision response, are
also evidenced by distinctively odd sounds. As physically based
animation continues to becomes more commonly used, sound gen-
eration could become useful not only for its own sake but also as
standard tool for working with and debugging simulations.
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Figure 11: A slightly bowed sheet being bent back and forth.
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